RÉPUBLIQUE TUNISIENNE

MINISTÈRE DE L'ÉDUCATION

EXAMEN DU BACCALAURÉAT SESSION 2021

Épreuve: Mathématiques

Session de contrôle Section: Mathématiques

Durée : 4h

Coefficient de l'épreuve : 4

N° d'inscription

Le sujet comporte cinq pages. Les pages 4/5 et 5/5 sont à rendre avec la copie.

Exercice 1 (3 points)

Soit $a \in \mathbb{Z}$.

- 1) Déterminer les restes possibles modulo 6 de l'entier a^2 .
- 2) Vérifier que $a^3 \equiv a \pmod{6}$.
- 3) a/ Montrer par récurrence que pour tout $n \in \mathbb{N}$, $a^{2n+1} \equiv a \pmod{6}$.
 - **b**/ En déduire que pour tout entier $n \ge 1$, $a^{2n} \equiv a^2 \pmod{6}$.
- 4) Résoudre dans \mathbb{Z}^2 le système $\begin{cases} x^7 y^8 \equiv 0 \pmod{6}, \\ x^3 y^2 \equiv 1 \pmod{6}. \end{cases}$

Exercice 2 (5 points)

Le plan est orienté dans le sens direct. Dans la figure 1 de l'annexe jointe, ABC est un triangle rectangle et isocèle en A de sens direct, le point O est le milieu du segment [BC] et les triangles AEB et ACF sont équilatéraux directs.

- 1) Soit r_1 la rotation de centre A et d'angle $\frac{5\pi}{6}$. Montrer que $r_1(B) = F$ et $r_1(E) = C$.
- 2) Soit S la symétrie orthogonale d'axe (OA).
 - a/ Montrer que S([BE]) = [CF].
 - **b**/ Les droites (BE) et (CF) se coupent en un point Ω . Montrer que les points A, O et Ω sont alignés.
- 3) Soit f un déplacement qui envoie le segment [BE] sur le segment [CF].
 - a/ Montrer que $f = r_1$ ou f est la rotation r_2 d'angle $-\frac{\pi}{6}$ et de centre Ω .
 - **b**/ Construire le point $A' = r_2(A)$ et montrer que ACA'F est un losange.
- 4) Soit g l'antidéplacement qui envoie B sur F et E sur C.
 - a/ Montrer que g est une symétrie glissante.
 - **b**/ Montrer que g(A) = A'.
 - c/ Soit I le milieu du segment [BE] et J = g(I). Montrer que $g = S_{(IJ)}$ o t_{IJ} .

Exercice 3 (4.5 points)

Le plan est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

- 1) a/ Résoudre dans l'ensemble \mathbb{C} l'équation : $z^2 + z + \frac{1}{3} = 0$. On note z_1 et z_2 les solutions avec $Im(z_1) > 0$.
 - b/ Écrire z_1 sous forme exponentielle.

Dans la figure 2 de l'annexe jointe , A et B sont les points d'affixes respectives 1 et $e^{i\frac{5\pi}{6}}$. Δ est la droite d'équation $x=-\frac{1}{2}$.

- 2) La droite Δ coupe la droite (OB) au point C. Montrer que l'affixe du point C est égale à z_1 .
- 3) Soit D le point d'affixe $z_D = \frac{1}{3\sqrt{3}}i$.
 - a/ Vérifier que $z_D = z_1^3$.
 - **b**/ Montrer que $\frac{z_D-1}{z_1-1}=\frac{2}{3}$.
 - c/ Construire le point D.
- 4) Soit $z \in \mathbb{C}$.

Montrer que $(z^2 + z \in \mathbb{R})$ équivaut à $(z \in \mathbb{R} \text{ ou } Re(z) = -\frac{1}{2})$.

- 5) Pour $z \in \mathbb{C} \setminus \{1\}$, on désigne par M et N les points d'affixes respectives z et z^3 .
 - a/ Déterminer l'ensemble des points M du plan tels que les vecteurs \overrightarrow{AM} et \overrightarrow{AN} sont colinéaires.
 - b/ Dans la figure 2 de l'annexe, on a placé un point P de la droite Δ d'affixe α . Construire, en justifiant, le point Q d'affixe α^3 .

Exercice 4 (7.5 points)

Partie A

Dans la figure 3 de l'annexe jointe, on a tracé dans un repère orthonormé (O, \vec{i}, \vec{j}) , la courbe représentative (\mathcal{C}_g) de la fonction g définie sur \mathbb{R} par $g(x) = xe^x$.

 α et β sont les réels tels que $g(\alpha) = 1$ et $g(\beta) = \frac{1}{2}$.

- 1) En utilisant le graphique,
 - a/ donner le tableau de signe de la fonction dérivée g' de g,
 - b/ résoudre dans R chacune des inéquations ci-dessous.

$$g(x) < \frac{1}{2}$$
 et $g(x) < 1$.

2) Montrer que $\alpha > \frac{1}{2}$.

- 3) Soit f la fonction définie sur \mathbb{R} par $f(x) = g(x) (g(x))^2$. On désigne par (\mathscr{C}_f) sa courbe représentative dans le repère (O, \vec{i}, \vec{j}) .
 - a/ Calculer $f(\alpha)$ et $f(\beta)$.
 - b/ Calculer $\lim_{x\to -\infty} f(x)$. Interpréter le résultat.
 - c/ Montrer que $\lim_{x\to +\infty} f(x) = -\infty$. Déterminer la branche infinie de (\mathscr{C}_f) au voisinage de $+\infty$.
- 4) a/ Montrer que pour tout $x \in \mathbb{R}$, $f'(x) = 2g'(x) \left(\frac{1}{2} g(x)\right)$.
 - \mathbf{b} / Dresser le tableau de variation de f.
 - c/ Tracer (\mathscr{C}_f) dans le repère (O, \vec{i}, \vec{j}) .
- 5) Soit $\mathscr A$ l'aire en (u.a) de la partie du plan limitée par $(\mathscr C_f)$, $(\mathscr C_g)$ et les droites d'équations respectives x=0 et $x=\alpha$.
 - a/ Montrer que $\mathscr{A} = \frac{1}{2} \int_0^\alpha x e^{2x} dx$.
 - **b**/ En déduire que $\mathscr{A} = \frac{1}{4} \frac{1}{2\alpha} + \frac{1}{4\alpha^2}$.

Partie B

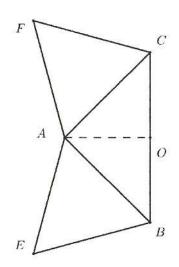
Pour tout entier $n \ge 2$, on pose $J_n = \int_0^{\alpha} (g(x))^n dx$.

- 1) a/ Montrer que $0 \le J_n \le \frac{\alpha}{n+1}$.
 - **b**/ En déduire $\lim_{n\to+\infty} J_n$.
- 2) a/ Montrer que $\int_{\alpha-\frac{1}{n}}^{\alpha} (g(x))^n dx \leq J_n$.
 - **b**/ Montrer que $\frac{1}{n} \left[g \left(\alpha \frac{1}{n} \right) \right]^n \le J_n \le 1$.
 - c/ Justifier que $\sqrt[n]{n} = e^{\frac{\ln n}{n}}$ puis montrer que $\lim_{n \to +\infty} \sqrt[n]{J_n} = 1$.

	Section:	Signatures des surveillants
	Nom et Prénom :	************
ĬΧ	Date et lieu de naissance :	

Épreuve: Mathématiques - Section : Mathématiques Session de contrôle (2021) Annexe à rendre avec la copie

Figure 1



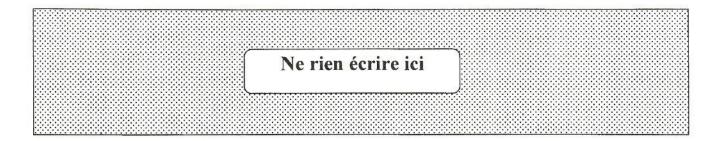


Figure 3

